CommunautA®© Francophone des Utilisateurs de Xoops - Support Officiel

Le modA?le objet de Xoops
CatA©gorie : Fiches techniques
PubliA®© par Christian le 17/04/2005

Le modAdle objet de XOOPSpar OryxvetLe modA?le objet de xoops est basA®© sur 2 classes
XoopsObject et XoopsObjectHandler toutes les deux codA©es dans le fichier /kernel/object.php. Ces
2 classes forment la couche d'accA’s aux donnA©es persistantes telle qu'elle est dA©crite dans le
DAO pattern. C'est en les spA@©cialisant que I'on implA©mente le modA2le pour une entitA©
particuliA?re (souvent associA© Aj une seule table de BD) comme le font toutes les classes du
rA©pertoire kernel qui constitue le noyau de xoops. J'encourage fortement les programmeurs de
nouveaux modules xoops s'appuyant sur des tables de BD Aj utiliser ce modAdle. Les raisons
d'utiliser ces 2 classes sont multiples : -> uniformiser la maniAgre de programmer et A2tre prA2s des
standards de codage de xoops ->augmenter la lisibilitA© du code et ainsi faciliter la maintenance
->fiabiliser votre code en s'appuyant sur du code xoops maintes fois validA© ->mais aussi
bA©nAdficier d'un certain nombre de mA©canismes gA©nAcCriques integrA©s dans Xoops
XoopsObject possAdde tous les services relatifs Aj la gestion d'un objet (une instance de la classe)
et de ses attributs (getter et setter) alors que XoopsObjectHandler sert de manipulateur ou de
contrA’leur des instances (insertion, modification ou sA®©lection d'objets.

Dans une premiAdre partie, je dA©cris en dAGtail ces 2 classes en prenant exemple sur une classe
du noyau xoops XoopsPrivmessage qui s'appuie sur la table priv_msgs puis dans une seconde
partie je prA©sente un petit gA©nACrateur de code de ce modAdle.XoopsObjectHandler et
XoopsObjectNous allons utiliser comme exemple la table priv_msgs qui permet d'envoyer des
message privA©s entre membres du portail.

Figure 1 : Decription de la table priv_msgsXoopsObject est la classe mA2re permettant de
manipuler les attributs d'un objet donnA®es. Il s'appuie sur le tableau $vars pour manipuler les
attributs de l'objet. $vars contient les attributs de I'objet sous la forme clA©, valeur. La clA©
dA®©signe le nom de l'attribut c'est Aj dire souvent le nom d'une colonne de la table de BD.
XoopsObject offre des mA©canismes gA©nAGriques d'accA’s aux donnA®es ; ses principales
mA®©thodes sont :->initvVar ($key, $data_type) permettant d'initialiser la dA©finition d'un attribut
->setVar($key, $value) qui met Aj jour l'attribut ->getVar($kkey) qui restitue la valeur de I'attribut
->cleanVars () nettoie les attributs des caractA2res spA©ciaux pour les stocker dans la BD La classe
associA©e au Privmessage ne doit ainsi dAGfinir que les attributs qu'elle veut gACrer classA
XoopsPrivmessageA extendsA XoopsObject

https://lwww.frxoops.org 02/02/2026 00:47:23 / Page 1

https://www.frxoops.org/userinfo.php?uid=11
https://www.frxoops.org
mailto:no_reply@frxoops.org

AAAA}

} Il existe plusieurs intA©rAdts d'utiliser un tableau plutA't qu'autant d'attribut de classe que de

variables (couramment fait en java). Il est plus efficace en terme de temps d'exA©cution de

manipuler de tels tableaux car ce modAdle est plus proche de la structure de la requA2te http

postA®©e. En travaillant sur un tableau on A©conomise le dA©chargement du tableau en variable. La

requAdte (issue par exemple d'un formulaire de mise Aj jour d'un objet) s'utilise directement pour

charger un objet. Voici un exemple ou par convention les champs HTML vont A2tre nommA®©s

comme le nom des attributs. $pmA =&A $pm_handler->get($idPm);A

/1A RA©cupA®rationA deA I'objetA

$pm->setVars(($_post)A ;A //A MiseA AjA jourA deA l'objetA AjA partirA deA laA requAdteA

$pm_handlerA ->insert($pm)A ;A //A miseA AjA jourA physiqueA dansA laA BD C'est un peu lourd

puisque I'on passe toute la requAdte mais le setVars fera le " mA©nage " en vA®rifiant si la clA© est

un attribut gA©rA© par la class. Une autre solution est de parcourir les vars de la class pour l'aller

chercher que ceux dont on a besoin : foreachA ($pm->getVars()A asA $keyA =>A $value)A {

A AifA (isset($_POST[$key])A {A

A A A A $pm->setVar($key,$_POST[$key));

AA}

} Quelque soit I'option choisie, en passant l'objet au handler, la mise Aj jour est stockA©e dans la

BD : $pm_handlerA ->insert($pm)A ; XoopsObjectHandler est une classe abstraite qui une fois

implantA©e permet de manipuler les objets d'une class particuliA?re (maclasse) A©tendant la class

xoopsObject. Ce Handler (ou manipulateur) peut se rA©cupA®rer Aj l'aide de la mA©thode

xoops_gethandler du fichier /include/function.php en passant le nom de la classe maclasse que I'on

veut manipuler. Attention toutefois car cette mA©thode se base sur une convention de nom, il faut

avoir nommA®© le handler xoopsmaclasseHandler. On peut aussi simplement instancier la class.

$pm_handlerA =&A xoops_gethandler(‘privmessage’);

/IA OuA bienA

$pm_handlerA =A newA XoopsPrivmessageHandler($xoopsDB) Voici les principales mA©thodes

proposA®©es par ce handler qu'il s'agit d'implA©menter :->create : crA©ation d'un nouvel objet Aj

l'aide de la mA©thode (rAOfA©rence au pattern fabrique) ->insert : modification d'un objet ->delete
suppression d'un objet ->get($id) : accA’s direct Aj un objet Aj l'aide de son identifiant

Les diffA©rentes implA©mentations de XoopsObjectHandler des classes du rA©pertoire /kernel

introduisent 2 autres mA®©thodes bien utile non prA©sents dans la class mAgre : ->getObjects

renvoie sous forme de tableau de xoopsobjet une sA®©lection d'objet Aj partir d'un ensemble de

critA?res (class criteria du rA©pertoire /class). Ceci est bien utile pour construire un formulaire de

recherche ->getCount renvoie le nombre d'occurrences d'une sA©lection d'objets Aj partir de

critA2res

Typiquement voici un exemple de sA®lection de I'ensemble de privateMsg d' un utilisateur puis

l'affichage du sujet et de la date du message : $criteriaA =A newA Criteria('to_userid',A $xoopsUser

->getVar(‘'uid");

$pmsA =&A $pm_handler->getObjects($criteria);

foreachA ($pmsA asA $pmA A {

echoA $pm->getVar('subject).-.$pm->getVar(msg_time")A ;

} L'utilisation avec un template smarty sera aussi simple en affectant I'ensemble de I'objet :

$pmsA =&A $pm_handler->getObjects(newA Criteria('to_userid',A $xoopsUser->getVar('uid)));

$xoopsTpl->assign('pms',$pm); AssociA© au template smarty : sectionA name=iA loop=$pms}>

https://lwww.frxoops.org 02/02/2026 00:47:23 / Page 2

https://www.frxoops.org
mailto:no_reply@frxoops.org

$pms]i]->vars.A subject.value}>

$pms[i]->vars.A msg_time.value}>

section}> Class_generator : un gA©nACrateur trA2s simple.Pour A©viter le fastidieux codage de
limplA©mentation de ces 2 classes, nous avons dA©veloppA© un petit gA©nA©rateur qui nous a
fait gagnA© du temps et a fiabilisA© et homogA©nA®©ISA® le code de type DAO. Il s'appuie sur un
seul template smarty dA©crivant le fichier des 2 classes implA©mentent respectivement
XoopsObject et XoopsObjectHandler. Le template peux bien entendu A2tre modifiA© pour prendre
en compte les besoins spA@cifiques. Ce gA©nACrateur utilise uniquement les informations issues
de la base de donnA®es ce qui impose d'avoir dA©jAj une table de base de donnA®e sur laquelle
s'appuyer. Class_generator gA©nA2re un fichier par table de Base de donnA®©es. Il se base
aujourd'hui sur la convention que la table source ne doit possA©der qu'une seule clA© primaire. Ceci
pour gA©nAorer la mA©thode du handler getld($maClePrimaire). Une fois le module installA©,
l'accA’s au gA©nACrateur s'effectue dans la partie administration. Dans le formulaire " GA©nAGrer
une class " aprA2s avoir sA@lectionnA© le module sur lequel on travaille et la table de BD existante,
le clic sur le bouton " gA©nA©rer " gA©nAare un fichier nommA®© du nom de la table de BD
sAClectionnA©e dans le rA©pertoire /class du module.Le module est tAG©IA©chargable sur le site
dev.oryxvet.com OryxVet

https://lwww.frxoops.org 02/02/2026 00:47:23 / Page 3

https://www.frxoops.org
mailto:no_reply@frxoops.org

