
CommunautÃ© Francophone des Utilisateurs de Xoops - Support Officiel

Le modÃªle objet de Xoops
CatÃ©gorie : Fiches techniques
PubliÃ© par Christian le 17/04/2005

Le modÃªle objet de XOOPSpar OryxvetLe modÃªle objet de xoops est basÃ© sur 2 classes
XoopsObject et XoopsObjectHandler toutes les deux codÃ©es dans le fichier /kernel/object.php. Ces
2 classes forment la couche d'accÃ¨s aux donnÃ©es persistantes telle qu'elle est dÃ©crite dans le
DAO pattern. C'est en les spÃ©cialisant que l'on implÃ©mente le modÃªle pour une entitÃ©
particuliÃªre (souvent associÃ© Ã¡ une seule table de BD) comme le font toutes les classes du
rÃ©pertoire kernel qui constitue le noyau de xoops. J'encourage fortement les programmeurs de
nouveaux modules xoops s'appuyant sur des tables de BD Ã¡ utiliser ce modÃªle. Les raisons
d'utiliser ces 2 classes sont multiples : -> uniformiser la maniÃªre de programmer et Ãªtre prÃªs des
standards de codage de xoops ->augmenter la lisibilitÃ© du code et ainsi faciliter la maintenance
->fiabiliser votre code en s'appuyant sur du code xoops maintes fois validÃ© ->mais aussi
bÃ©nÃ©ficier d'un certain nombre de mÃ©canismes gÃ©nÃ©riques integrÃ©s dans Xoops
XoopsObject possÃªde tous les services relatifs Ã¡ la gestion d'un objet (une instance de la classe)
et de ses attributs (getter et setter) alors que XoopsObjectHandler sert de manipulateur ou de
contrÃ´leur des instances (insertion, modification ou sÃ©lection d'objets.
Dans une premiÃªre partie, je dÃ©cris en dÃ©tail ces 2 classes en prenant exemple sur une classe
du noyau xoops XoopsPrivmessage qui s'appuie sur la table priv_msgs puis dans une seconde
partie je prÃ©sente un petit gÃ©nÃ©rateur de code de ce modÃªle.XoopsObjectHandler et
XoopsObjectNous allons utiliser comme exemple la table priv_msgs qui permet d'envoyer des
message privÃ©s entre membres du portail.
 Figure 1 : Decription de la table priv_msgsXoopsObject est la classe mÃªre permettant de
manipuler les attributs d'un objet donnÃ©es. Il s'appuie sur le tableau $vars pour manipuler les
attributs de l'objet. $vars contient les attributs de l'objet sous la forme clÃ©, valeur. La clÃ©
dÃ©signe le nom de l'attribut c'est Ã¡ dire souvent le nom d'une colonne de la table de BD.
XoopsObject offre des mÃ©canismes gÃ©nÃ©riques d'accÃ¨s aux donnÃ©es ; ses principales
mÃ©thodes sont :->initVar ($key, $data_type) permettant d'initialiser la dÃ©finition d'un attribut
->setVar($key, $value) qui met Ã¡ jour l'attribut ->getVar($kkey) qui restitue la valeur de l'attribut
->cleanVars () nettoie les attributs des caractÃªres spÃ©ciaux pour les stocker dans la BD La classe
associÃ©e au Privmessage ne doit ainsi dÃ©finir que les attributs qu'elle veut gÃ©rer classÂ
XoopsPrivmessageÂ extendsÂ XoopsObject
{

/**
Â *Â constructor
Â **/
Â Â Â Â functionÂ XoopsPrivmessage()
Â Â Â Â {
Â Â Â Â Â Â Â Â $this->XoopsObject();
Â Â Â Â Â Â Â Â $this->initVar('msg_id',Â XOBJ_DTYPE_INT,Â null,Â false);
Â Â Â Â Â Â Â Â $this->initVar('msg_image',Â XOBJ_DTYPE_OTHER,Â 'icon1.gif',Â false,Â 100);
Â Â Â Â Â Â Â Â $this->initVar('subject',Â XOBJ_DTYPE_TXTBOX,Â null,Â true,Â 255);
Â Â Â Â Â Â Â Â $this->initVar('from_userid',Â XOBJ_DTYPE_INT,Â null,Â true);

https://www.frxoops.org 02/02/2026 00:47:23 / Page 1

https://www.frxoops.org/userinfo.php?uid=11
https://www.frxoops.org
mailto:no_reply@frxoops.org

Â Â Â Â Â Â Â Â $this->initVar('to_userid',Â XOBJ_DTYPE_INT,Â null,Â true);
Â Â Â Â Â Â Â Â $this->initVar('msg_time',Â XOBJ_DTYPE_OTHER,Â null,Â false);
Â Â Â Â Â Â Â Â $this->initVar('msg_text',Â XOBJ_DTYPE_TXTAREA,Â null,Â true);
Â Â Â Â Â Â Â Â $this->initVar('read_msg',Â XOBJ_DTYPE_INT,Â 0,Â false);
Â Â Â Â }
} Il existe plusieurs intÃ©rÃªts d'utiliser un tableau plutÃ´t qu'autant d'attribut de classe que de
variables (couramment fait en java). Il est plus efficace en terme de temps d'exÃ©cution de
manipuler de tels tableaux car ce modÃªle est plus proche de la structure de la requÃªte http
postÃ©e. En travaillant sur un tableau on Ã©conomise le dÃ©chargement du tableau en variable. La
requÃªte (issue par exemple d'un formulaire de mise Ã¡ jour d'un objet) s'utilise directement pour
charger un objet. Voici un exemple ou par convention les champs HTML vont Ãªtre nommÃ©s
comme le nom des attributs. $pmÂ =&Â $pm_handler->get($idPm);Â
//Â RÃ©cupÃ©rationÂ deÂ l'objetÂ
$pm->setVars(($_post)Â ;Â //Â MiseÂ Ã¡Â jourÂ deÂ l'objetÂ Ã¡Â partirÂ deÂ laÂ requÃªteÂ
$pm_handlerÂ ->insert($pm)Â ;Â //Â miseÂ Ã¡Â jourÂ physiqueÂ dansÂ laÂ BD C'est un peu lourd
puisque l'on passe toute la requÃªte mais le setVars fera le " mÃ©nage " en vÃ©rifiant si la clÃ© est
un attribut gÃ©rÃ© par la class. Une autre solution est de parcourir les vars de la class pour l'aller
chercher que ceux dont on a besoin : foreachÂ ($pm->getVars()Â asÂ $keyÂ =>Â $value)Â {
Â Â ifÂ (isset($_POST[$key]))Â {Â
Â Â Â Â $pm->setVar($key,$_POST[$key]);
Â Â }
} Quelque soit l'option choisie, en passant l'objet au handler, la mise Ã¡ jour est stockÃ©e dans la
BD : $pm_handlerÂ ->insert($pm)Â ; XoopsObjectHandler est une classe abstraite qui une fois
implantÃ©e permet de manipuler les objets d'une class particuliÃªre (maclasse) Ã©tendant la class
xoopsObject. Ce Handler (ou manipulateur) peut se rÃ©cupÃ©rer Ã¡ l'aide de la mÃ©thode
xoops_gethandler du fichier /include/function.php en passant le nom de la classe maclasse que l'on
veut manipuler. Attention toutefois car cette mÃ©thode se base sur une convention de nom, il faut
avoir nommÃ© le handler xoopsmaclasseHandler. On peut aussi simplement instancier la class.
$pm_handlerÂ =&Â xoops_gethandler('privmessage');
//Â OuÂ bienÂ
$pm_handlerÂ =Â newÂ XoopsPrivmessageHandler($xoopsDB) Voici les principales mÃ©thodes
proposÃ©es par ce handler qu'il s'agit d'implÃ©menter :->create : crÃ©ation d'un nouvel objet Ã¡
l'aide de la mÃ©thode (rÃ©fÃ©rence au pattern fabrique) ->insert : modification d'un objet ->delete
 suppression d'un objet ->get($id) : accÃ¨s direct Ã¡ un objet Ã¡ l'aide de son identifiant
 Les diffÃ©rentes implÃ©mentations de XoopsObjectHandler des classes du rÃ©pertoire /kernel
introduisent 2 autres mÃ©thodes bien utile non prÃ©sents dans la class mÃªre : ->getObjects
renvoie sous forme de tableau de xoopsobjet une sÃ©lection d'objet Ã¡ partir d'un ensemble de
critÃªres (class criteria du rÃ©pertoire /class). Ceci est bien utile pour construire un formulaire de
recherche ->getCount renvoie le nombre d'occurrences d'une sÃ©lection d'objets Ã¡ partir de
critÃªres
 Typiquement voici un exemple de sÃ©lection de l'ensemble de privateMsg d' un utilisateur puis
l'affichage du sujet et de la date du message : $criteriaÂ =Â newÂ Criteria('to_userid',Â $xoopsUser
->getVar('uid'));
$pmsÂ =&Â $pm_handler->getObjects($criteria);
foreachÂ ($pmsÂ asÂ $pmÂ)Â {
echoÂ $pm->getVar('subject').'-'.$pm->getVar('msg_time')Â ;
} L'utilisation avec un template smarty sera aussi simple en affectant l'ensemble de l'objet :
$pmsÂ =&Â $pm_handler->getObjects(newÂ Criteria('to_userid',Â $xoopsUser->getVar('uid')));
$xoopsTpl->assign('pms',$pm); AssociÃ© au template smarty : sectionÂ name=iÂ loop=$pms}>

https://www.frxoops.org 02/02/2026 00:47:23 / Page 2

https://www.frxoops.org
mailto:no_reply@frxoops.org

$pms[i]->vars.Â subject.value}>
$pms[i]->vars.Â msg_time.value}>
section}> Class_generator : un gÃ©nÃ©rateur trÃªs simple.Pour Ã©viter le fastidieux codage de
l'implÃ©mentation de ces 2 classes, nous avons dÃ©veloppÃ© un petit gÃ©nÃ©rateur qui nous a
fait gagnÃ© du temps et a fiabilisÃ© et homogÃ©nÃ©isÃ© le code de type DAO. Il s'appuie sur un
seul template smarty dÃ©crivant le fichier des 2 classes implÃ©mentent respectivement
XoopsObject et XoopsObjectHandler. Le template peux bien entendu Ãªtre modifiÃ© pour prendre
en compte les besoins spÃ©cifiques. Ce gÃ©nÃ©rateur utilise uniquement les informations issues
de la base de donnÃ©es ce qui impose d'avoir dÃ©jÃ¡ une table de base de donnÃ©e sur laquelle
s'appuyer. Class_generator gÃ©nÃªre un fichier par table de Base de donnÃ©es. Il se base
aujourd'hui sur la convention que la table source ne doit possÃ©der qu'une seule clÃ© primaire. Ceci
pour gÃ©nÃ©rer la mÃ©thode du handler getId($maClePrimaire). Une fois le module installÃ©,
l'accÃ¨s au gÃ©nÃ©rateur s'effectue dans la partie administration. Dans le formulaire " GÃ©nÃ©rer
une class " aprÃªs avoir sÃ©lectionnÃ© le module sur lequel on travaille et la table de BD existante,
le clic sur le bouton " gÃ©nÃ©rer " gÃ©nÃªre un fichier nommÃ© du nom de la table de BD
sÃ©lectionnÃ©e dans le rÃ©pertoire /class du module.Le module est tÃ©lÃ©chargable sur le site
dev.oryxvet.com OryxVet

https://www.frxoops.org 02/02/2026 00:47:23 / Page 3

https://www.frxoops.org
mailto:no_reply@frxoops.org

